
Theor Chim Acta (1987) 72:253-264

�9 Springer-Verlag 1987

A vectorizable potential energy functional
for reactive scattering*

Ernesto Garcia, ~ Luigi Ciccarelli 2 and Antonio Lagan/l 2

1 Departamento de Quimica Fisica, Facultad de Ciencias, Universidad del Pais Vasco,
E-48000 Bilbao, Spain
2 Dipartimento di Chimica, Universi,t~ di Perugia, 1-06100 Perugia, Italy

(Received April 15, revised and accepted May 27, 1987)

Critical steps in trajectory programs for vector restructuring are analysed. The
crucial effect of potential energy routine design on the efficiency of trajectory
calculations per formed on supercomputers have been investigated using a
test p rogram for which time consumpt ions when different algorithms are
implemented are compared. Compar isons have been extended to more realistic
computa t ional situations by inserting related routines in a trajectory program
and calculating reactive properties o f some systems of chemical interest.

Key words: Potential energy f u n c t i o n a l - - Reactive sca t t e r ing - - Supercomputer

1. Introduction

In a classical mechanics approach [1], the mot ion of three particles A, B and C
having masses mA, mB and mc on a given potential energy surface U(IqA--qB],
[qB--qcl,]qA--qcl) (q~ is the vector describing the location of particle I with
respect to a Cartesian frame of arbitrary origin and Jqi-qJ[is the internuclear
distance r~j between atoms I and J) is described by the Hamil tonian

H = T(pA,PB,Pc)+ U(rAB, rBc, rAC) (1)

where the kinetic opera tor T is defined as
2 2

T(pa,PB,Pc)= PA + PB 4 p~
2rnA 2rob 2me (2)

* This paper was presented at the International Conference on 'The Impact of Supercomputers on
Chemistry', held at the University of London, London, UK, 13-16 April 1987

254 E. Garcia et al.

with PA = mAqA. U is generated by the solution of the related electronic Schr6din-
ger equation. The time evolution of the system can be followed by integrating
nine pairs of Hamilton equations of the type

o H o H
qlw ~-- piw - (3)

Oplw Oq~w

for the three projections (w = x, y, z) of the conjugated quantities q~ and pt on
the axes of the Cartesian frame and for the three particles (! = A, B, C). By
working in the centre of mass, the number of equations to be solved can be
reduced to twelve. No advantage is usually taken from total energy (E) and total
angular momentum (J) constancy to further reduce the number of equations to
be integrated. On the contrary, their constancy is frequently used for checking
the accuracy of the numerical integration of Eqs. (3).

The large amount of cpu time required by trajectory integration makes a systematic
investigation of the properties of reactive systems quite difficult. This problem
can be relieved by making use of supercomputers (an IBM 3090/200 VF has
been used for calculations) and by restructuring classical trajectory programs so
as to take advantage of their special architecture. To do this, an analysis of the
program structure has been made and the most time consuming routines isolated
(Sect. 2). Speed up obtainable from restructuring the crucial section of the code
using different algorithms has been estimated using a test program (Sect. 3). The
efficiency of restructuring for a typical trajectory study of realistic chemical
reactions is discussed in Sect. (4).

2. Structure of trajectory programs

The general structure of a classical trajectory program is sketched in Fig. (1).
The program consists of an initial part in which the initiator of the random
sequence, physical constants of the problem (such as colliding masses, transla-
tional and internal energies, initial distances, potential parameters, number of
trajectories to be computed, etc.) are read in. The outermost DO loop running
over the trajectory index is then opened. This determines the set of initial values
to be selected randomly from a uniform distribution (phase of the initial oscillator,
impact parameter, in plane and outplane angles of orientation of the target
diatom, the angle formed between the initial direction of the velocity and the
plane containing the three particles at initial time).

Nested inside the main loop are respectively the DO loop over integration steps
and the DO loop over the 12 projections of the conjugated quantities on the
Cartesian frame. Within the innermost DO loop the routine POTDER is called
to evaluate the potential energy derivatives with respect to internuclear distances.
In the same DO loop the integration (INTEGR), chain rule (CHAINR), and
coordinate transformation (COORDT) routines are also called.

Earlier dynamical studies were carried Out using simple functional forms [2]
(such as the LEPS potential). Because related routines consist of few instructions

Potential energy functional for reactive scattering 255

Trajectory loop

Integration loop

Projections loop

I

Montecarlo generation of initial conditions

�9
�9

Potential and potential derivatives calls

Evaluation of final quantities

Statistical analysis update

O
Fig. 1. Sketch of the program structure. Open circles indicate opening of DO loops, Solid circles
indicate closing of DO loops

they take a little share of the overall cpu time. More recently, quite accurate
calculations [3] and experiments [4] have produced such a wealth of information
[5-7] on potential energy surfaces of reactive systems that, in general, they can
only be reproduced by flexible but complicated functional forms [8]. To deal
with the problem of an accurate representation of the atom diatom potential
energy surface, we have proposed a new functional representation of the inter-
action, following the approach of Murrell and co-workers [9]. They suggest
dividing the potential energy into the Multi-Body components

U (r l , r2, r3) = VRl(r l) + g22(r2) + g23(r3) + VB123(rl, r2, r3) (4)

where, for simplicity, the energy zero has been set at triatomic dissociation and
the AB, BC and AC pairs have been numbered as 1, 2 and 3. At first, we represented
the V2i terms as polynomials in the related Bond Order (BO) variable ni (ni =
exp {-b~(r~-r~)}, bi is a parameter and rei is the equilibrium distance of the
diatom)

K
V2~(r~) = ~ a~kn~ (5)

k~l

where K (the degree of the polynomial) is usually 4 so as to obtain the bi and
aik coefficients of the polynomial by solving a system of algebraic equations
generated by the requirement of reproducing the spectroscopic force constants
of the diatom. This functional form is highly flexible and, at the same time, easy
to compute. The use of BO variables allows a mapping of the interaction in a
space that ensures its linearization in a form naturally converging to asymptotic

256 E. Garcia et al.

limits for diatomic terms [10]. The, BO representation has been successfully
adopted also for the three body term [11] although in this case it does not
converge to the right limit at short distances. A variable designed to reproduce
both short and long range limits of the three body interaction is the product of
the BO variable times the corresponding internuclear distance (XBO) [12]. In
addition to being simple to calculate, BO and XBO functional representations
of V3123 have the advantage that their best fit coefficients can be estimated using
a linear regression.

After evaluating potential derivatives in POTDER, time increments of conjugated
quantities for the three particle system are calculated in the I N T E G R routine.
Usually an exit from this intermediate DO loop indicates either that the trajectory
being calculated has reached an asymptotic limit (of reactants or products type)
or that it has been trapped or slowed down in some region of the potential energy
surface so that the maximum allowed number of steps has been exceeded. At
this point, an analysis of quantities describing the system is performed and an
association with the nearest quantum state is made. In this way, quantum-like
scattering properties can be evaluated.

3. Vectorization of a test program

Parallel restructuring of a classical trajectory program is not a difficult task owing
to the fact that each trajectory is an independent event. Therefore, provided that
the initial conditions and final quantities are respectively generated and stored
in matrices (so that trajectory integrations connect two pre-defined array elements)
speed up factors obtainable are roughly equivalent to the number of cpus
available.

The restructuring of trajectory programs for vectorization is more complicated.
As already pointed out in the previous section, the key point for vector restructur-
ing of a trajectory program are in routines evaluating potential energy derivatives.
We have also already mentioned that BO and XBO polynomial representations
of the potential energy surface are easy to compute. Therefore, it is an interesting
problem to investigate the saving of computing time that can be obtained when
running in vector mode programs which make use of this formulation of the
potential energy.

In order to investigate in depth this problem, we have isolated the potential
energy calculation from the program context and designed several algorithms for
its evaluation. For simplicity, attention has been focussed upon the potential
energy value rather than on its several partial derivatives and the study has been
confined to BO representations. However, it can be easily shown that for BO and
XBO polynomials routines for calculating partial derivatives with respect to
internuclear distances have structure and performances similar to those of routines
evaluating potential energy. For these test runs a simple main program (VTEST)
has been written in which diatomic equilibrium distances (RO(*)), exponential
parameters (B(*)), the number of terms of the bond order expansion (JKL),
related coefficients (C(*), in vector form) and powers (JJ(*), KK(*) and LL(*))

Potential energy functional for reactive scattering 257

of the BO expansion of the potential are read in. In VTEST C(*) as well as J J(*),
KK(*) and LL(*) are transformed respectively into the matrix A(*,*,*) and the
vectors JG(*), KG(*) and LG(*) for use in nested DO loops. In addition,
maximum values of JG(*), KG(*) and LG(*) vector elements are stored in JM,
KM and LM. Also the maximum value of JM, KM and LM is stored for further
use (JKLMAX). Finally, routines calculating the potential energy using different
algorithms are called several time with different values of the internuclear dis-
tances R(*) in order to estimate the average time consumption per call.

The original potential energy routine POTJKL has been written in the form
usually adopted for scalar computers

C

101

102

103

S U B R O U T I N E P O T J K L (V J K L)

C O M M O N / C / J M , K M , L M , J K L , J K L M A X

C O M M O N / V / B(3),R(3),R O(3),C(99),A(O:8,0:8,0:S),JJ(99),KK(99),LL(99)

V J K L = 0.0

EN1 = E X P (- B (1) * (R (1) - RO(1)))

E N 2 = E X P (- B (2) * (R (2) - RO(2)))

E N 3 = E X P (- B (3) * (R (3) - R O (3)))

D O 103 L = 0 , L M

E N 3 X = E N 3 * * L

D O 102 K = 0 , K M

E N 2 X = E N 2 * * K

D O 101 J = 0 , J M

V J K L = V J K L + A (J , K , L) * E N 3 X * E N 2 X * E N I * * J

C O N T I N U E

C O N T I N U E

C O N T I N U E

R E T U R N

E N D

In order to have a more compact design of the routine, the potential has been
redefined using the more general formulation

JM KM LM
g(rl,r2, r3)=2 2 E - J ~ ' Aikln 1 n2 n3 (6)

j = o k=0 l=0

where diatomic terms have been incorporated into the three-body expansion by
setting equal to zero the power of BO variables other than that relative to the
considered diatom. Accordingly, Aj00, A0ko and A001 are set equal to the corre-
sponding diatomic coefficients. When POTJKL runs in vector mode, only one
small DO loop (out of three) vectorizes automatically. In consequence, little
advantage is gained from the vector architecture.

In order to extend the vectorization to all terms of the summation, we have
transformed the coefficient matrix into a vector and stored related exponents of
BO variables into separate vectors. Accordingly, the restructured code (POTPOW)
contains a single DO loop.

258 E. Garcia et al.

S U B R O U T I N E POTPOW(VPOW)
C

C O M M O N / C / J M , KM, LM, JKL, JKLMAX
COMMON/V/B(3) ,R(3) ,RO(3) ,C(99) ,A(0:8 ,0:8 ,0:8) .JJ(99) ,KK(99) ,LL(99)

C
VPOW = 0.0
EN1 = E X P (- B (1) * (R (1) - RO(1)))
EN2 = E X P (- B (2) * (R (2) - RO(2)))
EN3 = E X P (- B (3) * (R (3) - RO(3)))
DO 99 I = I , JKL
VPOW = V P O W + C(1)*ENI**JJ(I)*EN2**KK(I)*EN3**LL(1)

99 C O N T I N U E
R E T U R N
E N D

In our test case, the BO diatomic polynomials are all of the fourth order whilst
the three-body term is o f the sixth order. Therefore, JKL is 77 a more suitable
value for taking advantage of vectorization. The average cpu time per call o f
both these routines are shown in the second and third line of Table 1. In the first
two columns times measured on the IBM 3090/200 VF are reported. Time
consumptions recorded during previous calculations performed on a CRAY
X-MP.12 are reported in the third and fourth columns. A direct comparison of
IBM and Cray times is meaningless. In fact, different precisions (single on Cray
and double on IBM) and different time analysers used on the two machines
significantly affect measured cpu times. Therefore, only meaningful comparison
can be performed between scalar and vector performances measured on the same
machine.

Time figures obtained when inhibiting vectorization (a single cpu was used all
the time for these test runs) are shown in columns 1 and 3 respectively for the
two machines. Related cpu times measured while allowing vectorization are
reported in the second and fourth columns. When examining the cpu times shown
in the table, a few comments are in order. As expected, no speed-up could be
obtained when vectorizing VTEST. On a small scale, this is typically what occurs
for the M A I N section for any package dealing with a realistic problem. Sometimes
it also happens that the largest fraction of cpu time is spent in sections of the
program which are not suitable for vectorization. In these cases, even if significant
speed-ups are obtained for single routines, the global time saving can be percen-
tually very small.

Table 1. Per call CPU time a for program VTEST

Routine IBM scalar IBM vector Cray scalar Cray vector

VTEST 17.00 17.00 14.00 14.00
POTJKL 0.80 0.97 0.35 0.24
POTPOW 0.47 0.62 0.21 9.06
POTEX 0.37 0.10 0.21 0.02
POTCUR 0.13 0.04 0.06 0.08
POTGAT 0.08 0.05

Time in ms

Potential energy functional for reactive scattering 259

In addition, a blind application of vectorization can lead to a speed decrease.
This is what occurs for POTJKL on the IBM 3090/200 VF. The related speed-up
ratio (SUR) is 0.82 (the speed-up ratio is defined as SUR = S/V where S and V
are the cpu times spent in scalar and vector mode respectively). Similarly, for
POTPOW the SUR factor is 0.76. However, from a comparison of cpu times for
scalar runs of POTJKL and POTPOW, it is apparent that an effort to restructure
a computer code for running on a vector computer quite often pays off also in
terms of scalar speed.

Results obtained by running the same program on the Cray X-MP.12 are of a
different type. In fact, for both POTJKL and POTPOW the SUR calculated on
the Cray X-MP.12 is always larger than one. In particular, for POTJKL the value
SUR is 1.46 meaning that, though not large, some advantage is still obtained if
this routine is used for potential energy calculations. Clearer advantage is obtained
when the POTPOW routine runs on a Cray X-MP.12. In fact, even in scalar
mode, time spent per call for POTPOW is about half that of the original routine.
On top of that a quite large SUR value (3.50) is still achieved when running in
vector mode.

In order to further improve the vector efficiency of the code we have performed
a deeper restructuring of the original routine and left inside the DO loop only
a single exponentiation.

SUBROUTINE POTEX(VEX)

COM M O N / C / J M , K M , L M , J K L , J K L M A X
COMMON/V/B(3),R(3),RO(3),C(99),A(0:8,0:8,0:8),JJ(99),KK(99),LL(99)

VEX = 0.0
Xl = -B(1)*(R(1)- RO(1))
X2 = -B(2)*(R(2) - RO(2))
X3 = -B(3)*(R(3) - RO(3))
DO 99 I=I, JKL
VEX ~ VEX + C(I)*EXP(Xt*JJ(I) + X2*KK(I) + X3*LL(I))

99 CONTINUE
RETURN
END

In this case, the efficiency of IBM 3090/200 VF improves by a factor of two with
comparison to that of the original routine. On top of that, the SUR value is 3.70
making this routine eight times faster than the original one. Efficiency of the
Cray is not very good when the routine is run in scalar mode (efficiency gain
with comparison to the original routine is lower than a factor 2 as in the POTPOW
case). However, the strength of the restructured code can be fully appreciated
when it runs in vector mode. In fact, the SUR factor is 8.89. The POTEX routine
is 15 times faster than POTJKL.

A different approach has been also followed in order to find a more efficient way
of calculating the BO potential energy values on the IBM vector machine. By
taking advantage of the possibility of making use of indirect addressing on the

260 E. Garc ia et al.

IBM 3090/200 VF, powers of bond order terms have been evaluated outside the
DO loop. Inside it, the needed power is referenced using a vector index.

S U B R O U T I N E P O T C U R (V C U R)

C

C O M M O N / C / J M , K M , L M , J K L , J K L M A X

COMMON/V/B(3),R(3),RO(3),C(99),A(O:8,0:8,0:8),JJ(99),KK(99),LL(99)
C O M M O N / G A T V / J G (9 9) , K G (9 9) , L G (9 9)

D I M E N S I O N FJ(6) ,FK(6) ,FL(6)
C

V C U R = 0.0
E N J = E X P (- B (1) * (R (1) - RO(1)))

E N K = E X P (- B (Z) * (R (2) - RO(2)))

E N L = E X P (- B (3) * (R (3) - RO(3)))

FJ(1) = 1.0

FK(1) = 1.0

FL(1) = 1.0

DO 100 I = 2, J K L M A X
I I = I - 1

FJ(I) = F J (I I) * E N J

FK(I) = F K (I I) * E N K

FL(I) = F L (I I) * E N L

100 C O N T I N U E

DO 105 I = 1} J K L

V C U R = V C U R + C (I) * F J (J G (I)) * F K (K G (I)) * F L (L G (I))

105 C O N T I N U E

R E T U R N
E N D

In this case the IBM 3090/200 VF reaches its top performance. In fact, although
the value of the SUR factor is similar to that obtained for POTEX (3.25 here
against 3.70 for POTEX), the overall performance is superior because the scalar
speed is much better. When POTCUR is run on the Cray X-MP.12, the scalar
performance of this routine is excellent (0.06 ms). Unfortunately, when running
in vector mode, no further time saving can be obtained due to the inability of
this machine to vectorize codes making use of indirect addressing. The Cray
X-MP.12 can deal with indirect addressing by calling GATHER and SCATTER
routines. These routines in fact reorder vectors according to a predefined frame

S U B R O U T I N E P O T G A T (V G A T)

C
CO MMO N / C / JM,KM,LM,JKL,JKLMAX
COMMON/V/B(3) ,R(3)RO(3) ,C(99) ,A(0 :8 ,0 :8 ,0 :8) , J J (99) ,KK(99) ,LL(99)

C O M M O N / G A T V / J G (9 9) , K G (9 9) L G (9 9)
D I M E N S I O N FJ(99), FK(99) , FL(99), E J(99), EK(99) , EL(99)

C
VGAT = 0.0

ENJ = E X P (- B (1) * (R (1) - R O (I)))
E N K = E X P (- B (2) * (R (2) - RO(2)))

E N L = E X P (- B (3) * (R (3) - RO(3)))

DO 101 J = 0 , JM
E J (J + 1) = ENJ**J

101 C O N T I N U E
DO 102 K = 0 , KM
E K (K + 1) = E N K * K

Potential energy functional for reactive scattering 261

102 C O N T I N U E
DO 103 L = 0 , LM
EL(L+ 1) = ENL**L

103 C O N T I N U E
CALL GATHER(JKL,FJ ,EJ ,JG)
CALL GATHER(JKL, FK,EK,KG)
CALL GATHER(JKL, FL,EL,LG)
DO 105 I = 1, JKL
VGAT = VGAT + C(I)*FJ(I)*FK(I)*FL(I)

105 C O N T I N U E
R E T U R N
END

In the above routine the DO loop actually calculating the potential energy value
vectorizes because, before entering it, calls to the GATHER routine fill the FJ,
FK and FL vectors with the proper sequences. Although this procedure looks
quite complicated, the figures reported in the table indicate that this is the best
scalar algorithm for computing BO potential energies on a Cray. However, when
running in vector mode the speed gain is not as good as for POTCUR (the SUR
factor is only 1.65) and POTGAT is outperformed by POTEX by a factor of 2.

4. Vectorization tests for real cases

As already mentioned, saving in computer time obtained from the use of vectoriz-
able routines often, in real cases, is but a modest fraction of the overall time. In
fact, excellent peak performances of a few routines can be quenched out by non
vectorizable parts of the program. For this reason, after performing bench-like
calculations using the VTEST program, we have carried out calculations of
potential energy derivatives in their natural context of classical trajectory integra-
tions for realistic reactive systems using a program having the structure described
in Sect. 2 [13]. As a first case, we have examined the

Li + HCI(v, j) ~ LiCI(v', j ') + H (7)

reaction by running batches of 50 trajectories starting from initial conditions
reproducing experimental conditions [4]. Accordingly, the collision energy has
been set at 9.2 kcal/mole, and the target molecule has been assumed to be in its
ground vibrational state and at a rotational temperature of 60 K. Since the test
was performed on the IBM 3090/200 VF, we have used derivative routines having
the same structure as POTCUR because of the excellent vector performance of
this routine on the IBM machine. The cpu time spent in scalar mode for integrating
the 50 trajectories is 137.2 s while in vector mode it is 43.2 s. Related SUR factor
is 3.2.

An account of the efficiency of the restructured computer code is given in
Table 2.

In the table, the individual and fractional (related to total) cpu times spent by
the most time consuming routines are shown for both the scalar and vector runs.
As already pointed out in Sect. (3), the data of Table 2 demonstrates that the

262

Table 2. Absolute and relative CPU times a for a trajectory calculation

E. Garcia et al.

Routine Scalar time Scalar time % Vector time Vector time %

POTDER 100.0 72.9 24.7 57.1
INTEGR 22.6 16.5 5.8 13.4
CHAINR 9.6 7.0 9.3 21.6
COORDT 3.0 2.2 2.2 5.0

a Time in s

critical point of a classical trajectory calculation is in the evaluation of potential
derivatives (POTDER) which accounts for about 70% of the cpu time in a scalar
run. The second largest time consuming routine (when the program runs in scalar
mode) is I N T E G R which accounts for about another 20% of the global cpu time.
It is not surprising, therefore, that the time saving is very large even when
vectorization is involved for just these two routines. By vectorizing only POTDER
time consumption halves. When vectorization is extended to I N T E G R time
consumption reduces to 46.6 s. This account for 96.4% of the time saving obtained
when running the whole program in vector mode. This means that it is worthless
paying additional effort for vectorizing the rest of the program.

On the contrary, additional effort has been paid in analysing whether part of the
total speed up is due to factors not directly relevant to vectorization. For this
reason, we have repeated our calculations in scalar mode using level 3 optimization
(opt (3)) instead of the opt (0) level adopted in the previous run. In this way,
the optimization level automatically built into compilation by the vector option
is adopted also for scalar runs. As a result, again for a run of 50 trajectories, the
needed cpu time almost halves (it lowers from 137.2 s to 83.8 s). This fact
demonstrates that a large part of the time saving obtained when running the
program in vector mode is due to a better organization of the scalar part of the
code. As a further check of the influence of the optimization of scalar efficiency
in determining the trajectory code speed up, we have run this program using
opt (3) and allowing vectorization only for POTDER. As a result, cpu time lowers
to 44.1 getting quite close to the value obtained when running the whole program
in vector mode (43.2). This confirms the hypothesis that the main (and almost
unique) vectorization contribution to computing time saving can be obtained by
properly redesigning POTDER. Additional time saving is due to an appropriate
reorganization of the scalar code and by the use of appropriate optimization levels.

It is also interesting to notice that, because POTDER vectorizes nicely, when
running in vector mode its time share, though still large, lowers significantly. On
the contrary, non vectorizing routines (such as C H A I N R and COORDT) increase
significantly their time share. This seems to indicate that the success of a restructur-
ing process is evidenced by a levelling off of time fractions assigned to each routine.

The clear advantage of running restructured trajectory programs in vector mode,
even for realistic reactive investigations, has enabled us to undertake a systematic

Potential energy functional for reactive scattering

Table 3. Reactive cross sections a for M g + HF(v, j)

v = 2 v = 3 v = 4 v = 5

j = 0 0.15 6.22 11.9 16.1

j = 1 0.17 6.39 11.9 16.1

j = 4 0.65 6.35 11.5 15.7

j = 7 1.25 5.90 10.5 14.3

j = 10 1.64 5.69 10.0 14.1

a In ~k 2

263

investigation of reaction

Mg+ HF(v, j) ~ MgF(v', j ') + H (8)

on the same machine. Ab initio calculations of the potential energy have been
recently carried out for this system [14]. The study of this process is part of a
systematic analysis of reactivity and reactive dynamics of the family of alkaline
earth hydrogen fluoride systems [15]. By carrying out calculations on a supercom-
puter it is possible to perform a crossed analysis of the effect of vibrational and
rotational energy of the reactant molecule on the reactivity of the system in
reasonable time. An example of results obtainable from this kind of calculation
is reported in Table 3 for Err = 20 kcal/mole (cpu time needed for these calcula-
tions has been about 35 hr).

Although a full rationalization of the dynamical behaviour of this reactive system
requires additional computational effort for running more trajectories (both in
order to have a wider variation of initial parameter and a graphical analysis of
reactive paths), data shown in the table already indicate that the reactive cross
section is a sensitive function of the vibrational and rotational energy of the
reactants. In fact, as for other members of this family of systems [6, 16], reactivity
increases with increasing vibrational energy, as expected from the late location
of the (high) barrier in the exit channel. On the contrary, and partially unexpected,
the effect of rotational energy on reactivity depends upon vibrational energy. In
fact, while rotational energy favours reactivity at low reactant vibrational energy,
it quenches reaction when the reagent diatom is highly vibrationally excited.

5. Conclusions

The main conclusion of our work is that vectorization of classical trajectory
programs can be profitably performed only when the potential energy representa-
tion is reformulated in a way that allows vectorization, having isolated this
problem from the bulk of the program, we have used a test program for studying
the suitability of different algorithms in speeding up the integration of classical
trajectories in both scalar and vector mode. In this way, we have found that
speed ups of an order of magnitude can be easily obtained and that indirect
addressing is the best technique for dealing with this problem on the IBM 3090/200
VF. In addition, we have found that time savings obtained in test calculations

264 E. Garcia et al.

are, in large part, t ransferred to realistic cases. As a consequence, trajectory

programs can take advantage not only of paral lel ism and of the higher scalar
speed of supercomputers , but they can also reduce time requirements by using

vectorizable potent ial energy funct ional forms. In this way, it is possible to confine

the comput ing time needed for investigating reactive properties of realistic
chemical systems to within reasonable limits.

Dur ing this invest igat ion we have also found that a careful restructuring is in
any case of great advantage for accelerating scalar calculat ions and that a thought
ba lance between effort for vector restructuring and time saving obta ined has to

be made. Moreover, in some cases vectorizat ion overheads have shown to be so
heavy that the program runs faster in scalar mode.

In our calculat ions, we have also found that, in general, the Cray X-MP.12

improves its per formance when going from scalar to vector mode. On the contrary,
our experience suggests that this is not the case for the IBM 3090/200 VF. At
the same time, we have found that in the case of indirect addressing the IBM

3090/200 VF gives its best performance. Meanwhi le , for the same case the Cray
X-MP.12, a l though runn ing very fast in scalar mode, has to be helped by calls

to special routines a imed at reordering vectors to run in vector mode.

Acknowledgments. Authors wish to thank IBM for generous allocation of free computer time on IBM
3090/200 VF at ECSEC (Roma, Italy). Calculations on the Cray X-MP.12 have been performed at
Cineca (Casalecchio, Italy).

References
1. Truhlar DG, Muckerman JT (1979). In: Bemstein RB (ed) Atom molecule collision theory. New

York, Plenum, p 105
2. Connor JNL (1979) Comput Phys Commun 17:117
3. See for example Schaefer IlI HF (1975). In: Bernstein RB (ed) Atom molecule collision theory.

New York, Plenum, p 45
4. See for example Becker C, Casavecchia P, Tiedeman P W, Valentini JJ, Lee YT (1980) J Chem

Phys 73:2833
5. Garcia E, Lagan~ A, Hernandez ML, Alvarifio JM (1986) J Chem Phys 84:3059
6. Jaffe RL, Pattengill MD, Mascarello FG, Zare RN J Chem Phys (in press)
7. Palmieri P, Garcia E, Lagan~ A J Chem Phys (in press)
8. Sathyamurthy N (1985) Comput Phys Rep 3:1
9. Murrell JN, Carter S, Huxley P, Farantos SC, Varandas AJC (1984) Molecular potential energy

functions. London, Wiley; Varandas AJC (1985) J Mol Struct 120:401
10. Garcia E, Lagan~ A (1985) Mol Phys 56:621
11. Garcia E, LaganA A (1985) Mol Phys 56:629
12. Dini M, Lagan~ A (unpublished results)
13. A program derived from QCPE n. 273, Department of Chemistry, Bloomington, Indiana
14. Paniagua M, Garcia della Vega JM, Alvarez Collado JR, Alvarifio JM, Lagan~ A (1986) Chem

Phys 101:55
15. Alvarifio JM, LaganA A, Paniagua M Stud Chem (in press); Chapman S, Dupuis M, Green S

(1983) Chem Phys 78:93
16. Chapman S (1984) J Chem Phys 81:262

